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Abstract: The binary adder is the critical element in most 

digital circuit designs including digital signal processors 

(DSP) and microprocessor data path units. As such, 

extensive research continues to be focused on improving the 

power delay performance of the adder. In VLSI 

implementations, parallel-prefix adders are known to have 

the best performance. Binary adders are one of the most 

essential logic elements within a digital system. In addition, 

binary adders are also helpful in units other than Arithmetic 

Logic Units (ALU), such as multipliers, dividers and 

memory addressing. Therefore, binary addition is essential 

that any improvement in binary addition can result in a 

performance boost for any computing system and, hence, 

help improve the performance of the entire system.RNS 

schemes can be easily implemented using Parallel-prefix 

adders (also known as carry-tree adders) are known to have 

the best performance in VLSI designs. A standard RNS is 

defined exclusively for positive integers. To accommodate 

negative integers, an implicit signed number system may be 

considered to be split into a positive half of the range and a 

negative half of the range. At the same time it is 

inconvenient to design applications by using these normal 

architectures. That’s why the proposed design is developed. 

This paper investigates three types of carry-tree adders (the 

Kogge-Stone, sparse Kogge-Stone, and spanning tree adder) 

and compares them with the Brent kung adder and Ladner 

fischer. In this project Xilinx-ISE tool is used for 

simulation, logical verification, and further synthesizing. 

Keywords: Spanning Adder, Brent Kung Adder, Kogge 

Stone Adder, Ladner Fischer, Sparse Kogge. 

 

I. INTRODUCTION 

      Arithmetic is the oldest and most elementary branch of 

Mathematics. The name Arithmetic comes from the Greek 

word άριθμός (arithmos). Arithmetic is used by almost 

everyone, for tasks ranging from simple day to day work 

like counting to advanced science and business calculations. 

As a result, the need for faster and efficient Adders in 

computers has been a topic of interest over decades.  

Addition is a fundamental operation for any digital system, 

digital signal processing or control system. A fast and accurate 

operation of a digital system is greatly influenced by the 

performance of the resident adders. Adders are also very 

important component in digital systems because of their 

extensive use in other basic digital operations such as 

subtraction, multiplication and division. Hence, improving 

performance of the digital  adder  would  greatly  advance  

the  execution  of  binary  operations  inside  a  circuit 

compromised of such blocks. The performance of a digital 

circuit block is gauged by analyzing its power dissipation, 

layout area and its operating speed. To humans, decimal 

numbers are easy to comprehend and implement for 

performing arithmetic. However, in digital systems, such as 

a microprocessor, DSP (Digital Signal Processor) or ASIC 

(Application-Specific Integrated Circuit), binary numbers 

are more pragmatic for a given computation. This occurs 

because binary values are optimally efficient at representing 

many values. 

     Binary adders are one of the most essential logic 

elements within a digital system. In addition, binary adders 

are also helpful in units other than Arithmetic Logic Units 

(ALU), such as multipliers, dividers and memory 

addressing. Therefore, binary addition is essential that any 

improvement in binary addition can result in a performance 

boost for any computing system and, hence, help improve 

the performance of the entire system. The major problem for 

binary addition is the carry chain. As the width of the input 

operand increases, the length of the carry chain increases. 

Fig 1 demonstrates an example of an 8- bit binary add 

operation and how the carry chain is affected. This example 

shows that the worst case occurs when the carry travels the 

longest possible path, from the least significant bit (LSB) to 

the most significant bit (MSB). In order to improve the 

performance of carry-propagate adders, it is possible to 

accelerate the carry chain, but not eliminate it. 

Consequently, most digital designers often resort to building 

faster adders when optimizing computer architecture, 

because they tend to set the critical path for most 

computations.     

 
Fig1. Binary Adder Example. 
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II. REDUCE NUMBER SYSTEM  
   Reduce number system (RNS) is an ancient numerical 

representation system. It is recorded in one of Chinese 

arithmetical masterpieces, the Sun Tzu Suan Jing, in the 4th 

century and transferred to European known as Chinese 

Remainder Theorem (CRT) in the 12th century. RNS is a 

non-weighted numerical representation system and has 

carry-free property in multiplication and addition 

operations. In recent years, it has been received intensive 

study in the very large scale integration circuits (VLSI) 

design for digital signal processing (DSP) systems with high 

speed and low power consumption. Bayoumi proposed a 

scheme for arbitrary modulus by using two cascaded binary 

adders .However, the delay is the sum of the two binary 

adders. Several literatures constructed several modular 

adders with two parallel binary adders to calculate A+B and 

A+B+T. This method can achieve less delay but needs about 

twice area of binary adder. Dugdale proposed a method to 

construct a type of general modular adders with a reused 

binary adder. The shortage of this structure is that it will use 

two operation cycles to perform one modular addition. The 

area or delay of these modular adders mentioned above is 

twice or more than that of binary adder. In recent studies, a 

few modular adders with better area and delay performance 

are presented. 

      Hiasat proposed a class of modular adders in which any 

regular Carry Look-Ahead(CLA)—based binary adder can 

be used in the final stage. However, it needs an extra CLA 

unit to get the carry-out bit of A+B+T before the final CLA 

addition. As a result, the structure does not reduce the delay 

significantly. The ELMMA algorithm proposed by Platelet 

al. uses two carry computation modules for A+B and 

A+B+T in which some carry computation units can be 

shared. The area reduction of this scheme dominated by the 

form of T. In the worst case, almost two independent carry 

generation modules are needed. Patelet al. also proposed 

several algorithms which can generate carries fast. A new 

number representation for modulo addition is proposed. 

However, its outputs are represented in special format. 

Thus, the extra area and delay are needed to perform the 

conversion from the special representation to binary number 

representation or all operations should be performed in this 

number representation format in RNS-based systems. On 

the other hand, the complexity of the special modular adder 

is much less than that of general modular adder, since the 

structure of the special modular adder can be further 

optimized according to the modulus.  

 

III. BINARY ADDER SCHEMES 

      Adders are one of the most essential components in 

digital building blocks, however, the performance of adders 

become more critical as the technology advances. The 

problem of addition involves algorithms in Boolean algebra 

and their respective circuit implementation. Algorithmically, 

there are linear-delay adders like ripple-carry adders (RCA), 

which are the most straightforward but slowest. Adders like 

carry-skip adders (CSKA), carry-select adders (CSEA) and 

carry-increment adders (CINA) are linear-based adders with 

optimized carry-chain and improve upon the linear chain 

within a ripple-carry adder. Carry-lookahead adders (CLA) 

have logarithmic delay and currently have evolved to 

parallel-prefix structures. Other schemes, like Ling adders, 

NAND/NOR adders and carry-save adders can help improve 

performance as well. 

      A Full Adder is a combinational circuit that performs the 

arithmetic sum of three input bits. It consists of three inputs 

and two outputs. Three of the input variables can be defined 

as A, B, Cin and the two output variables can be defined as 

S, Cout. The two input variables that we defined earlier A 

and B represents the two significant bits to be added. The 

third input Cin represents the carry bit. We have to use two 

digits because the arithmetic sum of the three binary digits 

needs two digits. The two outputs represents S for sum and 

Cout for carry. For designing a full adder circuit, two half 

adder circuits and an OR gate is required. It is the simplest 

way to design a full adder circuit. To design a full adder  

two XOR gates, two AND gates, one OR gate is required 

 
Fig 2. Full adder structure. 

  S = A ^ B ^ C            (1) 

  cout  =  A.B  +  (A ^ B).Cin           (2) 

A. Parallel Prefix Adders 
    Parallel prefix adders employs 3- stage structure of carry 

look ahead adder The improvement is in the carry 

generation stage which is the most intensive one. The below 

figure3 shows the structure of ling adder. The ling adder 

uses predetermined propagate and generate in 1
st
 stage of 

design. The 2
nd

 stage uses the carry calculation paralleled to 

reduce time .the 3
rd

 stage is the simple adder block to 

calculate the sum  

 
Fig 3. Structure of the parallel prefix adder. 

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/normal-0-false-false-false-en-us-x-none.html
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Fig 4. Processing component structure. 

    The parallel prefix graph for representation of prefix 

addition is shown as Fig 5. 

 
Fig 5. Parallel prefix adder structure. 

      Some of the parallel prefix adders are Ladner-Fisher 

adder, Brent-Kung adder, Kogge-Stone adder, sparse kogge 

stone adder, Spanning carry look ahead adder                                                                                          

B. Kogge-Stone Prefix Tree  
     Kogge-Stone prefix tree is among the type of prefix trees 

that use the fewest logic levels. A 16-bit example is shown 

in Figure 3.17. In fact, Kogge-Stone is a member of 

Knowles prefix tree. The 16-bit prefix tree can be viewed as 

Knowels [1,1,1,1]. The numbers in the brackets represent 

the maximum branch fan-out at each logic level. The 

maximum fan-out is 2 in all logic levels for all width 

Kogge-Stone prefix trees. The key of building a prefix tree 

is how to implement Equation according to the specific 

features of that type of prefix tree and apply the rules 

described in the previous section. Gray cells are inserted 

similar to black cells except that the gray cells final output 

carry outs instead of intermediate G/P group. The reason of 

starting with Kogge-Stone prefix tree is that it is the easiest 

to build in terms of using a program concept. The example 

in Figure 6 is 16-bit (a power of 2) prefix tree. It is not 

difficult to extend the structure to any width if the basics are 

strictly followed. For the Kogge-Stone prefix tree, at the 

logic level 1, the inputs span is 1 bit (e.g. group (4:3)  take 

the inputs at bit 4 and bit 3). Group (4:3) will be taken as 

inputs and combined with group (6:5) to generate group 

(6:3) at logic level 2. Group (6:3) will be taken as inputs and 

combined with group (10:7) to generate group (10:3) at 

logic level 3, and so on so forth. The number cells for a 

Kogge-Stone prefix tree can be counted as follows. Each 

logic level has n-m cells, where m = 2 
l level - 1

. That is, each 

logic level is missing m cells. That number is the sum of a 

geometric series starting from 1 to n/2 which totals to n-1. 

The total number of cells will be nlog 2n subtracting the 

total number of cells missing at each logic level , which 

winds up with nlog 2n-n +1. When n = 16, the area is 

estimated as 49. 

 
Fig 6. Block diagram of Kogge-Stone Prefix Tree. 

C. Sparse kogge stone adder 

     The sparse Kogge-Stone adder consists of several 

smaller ripple carry adders (RCAs) on its lower half, a carry 

tree on its upper half. It terminates with RCAs. The number 

of carries generated is less in a sparse KoggeStone adder 

compared to the regular Kogge-Stone adder. The 

functionality of the GP block, black cell and the gray cell 

remains exactly the same as in the regular Kogge-Stone 

adder. The sparse Kogge-Stone adder, this design terminates 

with a 4- bit RCA. As the FPGA uses a fast carry-chain for 

the RCA, it is interesting to compare the performance of this 

adder with the sparse Kogge-Stone and regular Kogge-Stone 

adders. 

 
Fig 7. Block diagram of Sparse Kogge-Stone Adder. 
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D. Spanning carry look ahead adder 

     Another carry-tree adder known as the spanning tree 

carry-lookahead (CLA) adder is like the sparse Kogge-Stone 

adder, this design terminates with a 4- bit RCA. As the 

FPGA uses a fast carry-chain for the RCA, it is interesting 

to compare the performance of this adder with the sparse 

Kogge-Stone and regular Kogge-Stone adders.  

 
Fig 8. Block diagram of spanning tree carry look ahead 

adder. 

E. Brent Kung Adder 

    The Brent Kung adder is the advanced version of Kogge 

stone adder. Kogge Stone adder   generates intermediate 

carries shown in the block diagram is very attractive for 

high-performance applications. However, it comes at the 

cost of area and power. A simpler tree structure could be 

formed if only the carry at every power of two positions is 

computed as proposed by Brent and Kung [7]. Figure.9 

shows a 16-bit prefix tree of their idea. An inverse carry tree 

is added to compute intermediate carries. Its wire 

complexity is much less than that of Kogge Stone adder. 

The number of slices, LUT, IOB Bounds is less compared to 

Kogge Stone Adder, Sparse Kogge stone Adder and 

Spanning Tree Carry Look Adder. When the usage of 

components reduces, the circuit complexity reduces, cost 

also gets reduces. so according to application either of the 

adder are used.   The large number of levels in Brent Kung 

Adder (BKA) however reduces its operational speed. BKA 

is also power efficient because of its lowest area delay with 

large number of input bits . The delay of BKA is equal to 

(2*log2n)-2 which is also the number of stages for the ―o‖ 

operator. The BKA has the area (number of ―o‖ operators) 

of (2*n)-2-log2n where n is the number of input bits [1]. 

The BKA is known for its high logic depth with minimum 

area characteristics .High logic depth here means high fan-

out characteristics.            

 
Fig 9. Block Diagram of Brent Kung Adder. 

 F. Lander-Fischer Adder 
    Addition operation is the main operation in digital signal 

processing and control systems. The fast and accuracy of a 

processor or system depends on the adder performance. 

Ripple carry adder is used for the addition operation i.e., if 

N-bits addition operation is performed by the N-bit full 

adder. In ripple carry adder each bit full adder operation 

consists of sum and carry, that carry will be given to next bit 

full adder operation, that process is continuous till the Nth 

bit operation. The N-1th bit full adder operation carry will 

be given to the Nth bit full adder operation present in the 

ripple carry adder. For 16-bit ripple carry adder, the first bit 

carry is given to second bit full adder, second bit carry is 

given to the third bit full adder, similarly the operation is 

continue till fifteenth bit carry is given to sixteenth bit full 

adder. The addition operation is performed from least 

significant bit to most significant bit in ripple carry adder. In 

ripple carry adders each bit wait for the last bit operation. In 

parallel prefix adders instead of    waiting for the carry 

propagation of the first addition, the idea here is to overlap 

the carry propagation of the first addition with the 

computation in the second addition, and so forth, since 

repetitive additions will be performed by a multi operand 

adder. The Ladner-Fischer is the parallel prefix adder used 

to perform the addition operation. It is looking like tree 

structure to perform the arithmetic operation. Ladner-

Fischer adder is used for high performance addition 

operation. The Ladner-Fischer adder consists of black cells 

and gray cells. Each black cell consists of two AND gates 

and one OR gate. Ladner-Fischer adder consists of three 

stages. They are pre-processing stage, carry generation 

stage, post-processing stage. 
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Fig 10. Block Diagram of LANDER FISCHER adder. 

IV. IMPLEMENTATION  

A. Kogge-Stone adder 

     Kogge-Stone prefix tree is among the type of prefix trees 

that use the fewest logic levels. In fact, Kogge-Stone is a 

member of Knowles prefix tree. 

 
Fig 11. Block view of 16 bit Kogge stone Adder. 

 
Fig 12. RTL View of 16 bit kogge stone adder  

B. Sparse Kogge-Stone adder  
     Another carry-tree adder known as the spanning tree 

carry-lookahead (CLA) adder is like the sparse Kogge-Stone 

adder, this design terminates with a 4- bit RCA. As the 

FPGA uses a fast carry-chain for the RCA, it is interesting 

to compare the performance of this adder with the sparse 

Kogge-Stone and regular Kogge-Stone adders.    

 
Fig 13. Block view of 16-bit sparse kogge-stone Adder. 

 
Fig 14. RTL View of 16-bit Sparse-kogge stone Adder. 

C. Spanning Tree Carry Look ahead Adder 

    Another carry-tree adder known as the spanning tree 

carry-lookahead (CLA) adder is like the sparse Kogge-Stone 

adder, this design terminates with a 4- bit RCA. As the 

FPGA uses a fast carry-chain for the RCA, it is interesting 

to compare the performance of this adder with the sparse 

Kogge-Stone and regular Kogge-Stone adders.  

 
Fig 15. Block view of 16-bit Spanning Tree Carry Look 

ahead Adder. 
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Fig16. RTL View of 16-bit Spanning Tree Carry 

Lookahead Adder. 

D. Lander-Fischer Adder 

    The Ladner-Fischer adder consists of black cells and gray 

cells.  

 

 
Fig 17. Block view of 16-bit LANDER-FISCHER Adder. 

 
Fig 18. RTL View of 16-bit LANDER-FISCHER Adder. 

    Each black cell consists of two AND gates and one OR 

gate. Ladner-Fischer adder consists of three stages. They are 

pre-processing stage, carry generation stage, post-processing 

stage. 

E. Brent-Kung Adder  

 
Fig 19. Block view of Brent-Kung adder 16-bit Adder. 

 
Fig 20. RTL View of 16-bit Brent-Kung Adder. 

    The Brent Kung adder is the advanced version of Kogge 

stone adder. Kogge Stone adder   generates intermediate 

carries shown in the block diagram is very attractive for 

high-performance applications. However, it comes at the 

cost of area and power. A simpler tree structure could be 

formed if only the carry at every power of two positions is 

computed as proposed by Brent and Kung [7]. 

V. RESULTS 

 
Fig 21. simulated wave form of kogge stone adder. 
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Fig22. Simulated wave form of sparse-kogge stone adder  

 
Fig 23. Simulated waveform of spanning tree carry 

alook head adder.  

 
Fig 24. Simulated waveform of LANDER-FISCHER 

adder. 

 
Fig 25. Simulated waveform of Brent-Kung adder. 

A. Performance Comparative Analysis 
    The below comparison table is drawn from the analysis of 

five adders in terms of delay, power memory and number of 

4 input LUTS which are used to compare the performance 

from synthesis report.  

TABLE 1: COMPARATIVE ANALYSIS 

 

VI. CONCLUSION  
     The Adders namely Brent kung adder, Ladner fischer 

adder, Spanning adder, Kogge stone adder and sparse Kogge 

stone adder are discussed in detail. Each individual module 

was tested for its correct functionality. This project has 

resulted in the development of Adders Design with reduced 

delay and power advantage. The Delay measurement and 

power analysis of the adders is being done and these 

designed kogge stone adder and sparse kogge stone 

adders power, delay and area is being compared with the 

other adder. From synthesis report the all the adders are 

compared in terms of delay, power memory and number of 

4 input LUTS. From the comparison table Kogge stone 

adder has less combinational delay with 12.499 ns, Ladner 

fischer adder has less amount of power consumption with 

0.26089 mw and uses less amount of 4 input LUTS.In future 

all the proposed architectures are designed using parallel 

prefix adders are used in the design of MAC unit. CMOS 

Implementation of adders in cadence is also being done for 

better performance. The architectures proposed are of 

combinational circuits, there is a tendency of causing struck 

at faults so the self checking circuits are to be designed in 

the future work to detect and correct the errors obtains in the 

adders. 
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