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Abstract: Comparators are the key design elements for a 

wide range of applications like scientific computation 

(graphics and image/signal processing),test circuit 

applications (jitter measurements, signature analyzers, and 

built-in self test circuits) and for general-purpose processor 

components (associative memories, load-store queue 

buffers, translation look-aside buffers, branch target 

buffers) and many other CPU argument comparison blocks 

.In this project a 16,32,64 bit comparator architectures is 

designed by using parallel prefix structure . This project 

evaluates the successful results as per requirement and 

specifications.  In existing system ,the parallel prefix 

structure is designed for 16 ,32 and 64 bit architectures and 

the reports from the Xilinx tool concludes that for every bit 

range doubles the delay , memory , LUT and power  has 

not doubled up to the mark. But In the proposed design of 

my project, each and every element in the parallel prefix 

structure will be replaced by universal logic (multiplexer) 

and the obtained results will be compared with existed 

design for the same device specifications. By performing 

this modification in the architecture will leads to reduction 

in power consumption and in delay parameters. 

 

Keywords: Multiplexer, Parallel Prefix Tree Structure, 

Bitwise Competition Logic (BCL). 

 

I. INTRODUCTION 
  Other comparator designs improve scalability and reduce 

comparison delays using a hierarchical prefix tree structure 

composed of 2-b comparators. These structures require 

log2 N comparison levels, with each level consisting of 

several cascaded logic gates. However, the delay and area 

of these designs may be prohibitive for comparing wide 

operands. The prefix tree structure’s area and power 

consumption can be improved by leveraging two-input 

multiplexers (instead of 2-b comparator cells) at each level 

and generate-propagate logic cells on the first level (instead 

of 2-b adder cells), which takes advantage of one’s 

complement addition. Using this logic composition, a 

prefix tree requires six levels for the most common 

comparison bit width of 64 bits, but suffers from high 

power consumption due to every cell in the structure being 

active, regardless of the input operands’ values. 

Furthermore, the structure can perform only “greater-than” 

or “less-than” comparisons and not equality. To improve 

the speed and reduce power consumption, several designs 

rely on pipelining and power-down mechanisms to reduce 

switching activity with respect to the actual input operands’ 

bit values. One design uses all-N transistor (ANT) circuits to 

compensate for high fan-in with high pipeline throughput.  

    A 64-b comparator requires only three pipeline cycles using 

a multiphase clocking scheme. However, such a clocking 

scheme may be unsuitable for high-speed single-cycle 

processors because of several heavily loaded global clock 

signals that have high-power transition activity. Additionally, 

race conditions and a heavily constrained clock jitter margin 

may make this design unsuitable for wide-range comparators. 

An alternative architecture leverages priority-encoder 

magnitude decision logic with two pipelined operations that 

are triggered at both the falling and rising clock edges to 

improve operating speed and eliminate long dynamic logic 

chains. However, 64-b and wider comparators require a 

multilevel cascade structure, with each logic level consisting 

of seven nMOS transistors connected in series that behave in 

saturating mode during operation. This structure leads to a 

large overall conductive resistance, with heavily loaded 

parasitic components on the clock signal, which severely 

limits the clock speed and jitter margin. Other architectures 

use a multiplexer-based structure to split a 64-b comparator 

into two comparator stages: the first stage consists of eight 

modules performing 8-b comparisons and the modules’ 

outputs are input into a priority encoder and the second stage 

uses an 8-to-1 multiplexer to select the appropriate result from 

the eight modules in the first stage. 

    Similarly, other energy-efficient designs leverage schemes 

toreduce switching activity. Compute-on demand comparators 

compare two binary numbers one bit at a time, rippling from 

the most significant bit (MSB) to the least significant bit 

(LSB). The outcome of each bit comparison either enables the 

comparison of the next bit if the bits are equal, or represents 

the final comparison decision if the bits are different. Thus, a 

comparison cell is activated only if all bits of greater 

significance are equal. Although these designs reduce 

switching, they suffer from long worst case comparison delays 

for wide worst case operands. To reduce the long delays 

suffered by bitwise ripple designs, an enhanced architecture 

incorporates an algorithm that uses no arithmetic operations. 

This scheme detects the larger operand by determining which 

operand possesses the leftmost 1 bit after pre-encoding, before 

supplying the operands to bitwise competition logic (BCL) 
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structure. The BCL structure partitions the operands into 8-

b blocks and the result for each block is input into a 

multiplexer to determine the final comparison decision. 

Due to this BCL-based design’s low transistor count, this 

design has the potential for low power consumption, but 

the pre-encoder logic modules preceding the BCL modules 

limit the maximum achievable operating frequency. In 

addition, special control logic is needed to enable the BCL 

units to switch dynamically in a synchronized fashion, thus 

increasing the power consumption and reducing the 

operating frequency. 

 
Fig.1. Block diagram of our comparator architecture, 

consisting of acomparison resolution module connected 

to a decision module. 

 

   To alleviate some of the drawbacks of previous designs 

(such as high power consumption, multi cycle 

computation, custom structures unsuitable for continued 

technology scaling, long time to market due to irregular 

VLSI structures, and irregular transistor geometry sizes), in 

this paper we leverage standard CMOS cells to architect 

fast, scalable, wide-range, and power-efficient algorithmic 

comparators with the following key features. 

 

II. COMPARATOR ARCHITECTURAL OVERVIEW 

     The comparison resolution module in Fig. 1 (which 

depicts the high-level architecture of our proposed design) 

is a novel MSB-to-LSB parallel-prefix tree structure that 

performs bitwise comparison of two N-bit operands A and 

B, denoted as AN−1, AN−2, . . ., A0 and BN−1, BN−2, . . 

., B0, where the subscripts range from N–1 for the MSB to 

0 for the LSB. The comparison resolution module performs 

the bitwise comparison asynchronously from left to right, 

such that the comparison logic’s computation is triggered 

only if all bits of greater significance are equal. The 

parallel structure encodes the bitwise comparison results 

into two N-bit buses, the left bus and the right bus, each of 

which store the partial comparison result as each bit 

position is evaluated, such that 

if Ak > Bk, then leftk = 1 and rightk = 0 

if Ak < Bk , then leftk = 0 and rightk = 1 

if Ak = Bk , then leftk = 0 and rightk = 0. 

 

    In addition, to reduce switching activities, as soon as a 

bitwise comparison is not equal, the bitwise comparison of 

every bit of lower significance is terminated and all such 

positions are set to zero on both buses, thus, there is never 

more than one high bit on either bus. The decision module 

uses two OR-networks to output the final comparison decision 

based on separate OR-scans of all of the bits on the left bus 

(producing the L bit) and all of the bits on the right bus 

(producing the R bit). If LR = 00, then A = B, if LR = 10 then 

A > B, if LR = 01 then A < B, and LR = 11 is not possible. An 

8-b comparison of input operands A = 01011101 and B = 

01101001 is illustrated in Fig. 2. In the first step, a parallel 

prefix tree structure generates the encoded data on the left bus 

and right bus for each pair of corresponding bits from A and 

B. In the above example, A7 = 0 and B7 = 0 encodes as left7 

= right7 = 0, A6 = 1, and B6 = 1 encodes as left6 = right6 = 0, 

and A5 = 0 and B5 = 1 encodes left5 = 0 and right5 = 1. At 

this point, since the bits are unequal, the comparison 

terminates and a final comparison decision can be made based 

on the first three bits evaluated.  

 
Fig. 2. Example 8-b comparison.   
 

    The parallel prefix structure forces all bits of lesser 

significance on each bus to 0, regardless of the remaining bit 

values in the operands. In the second step, the OR-networks 

perform the bus OR-scans, resulting in 0 and 1, respectively, 

and the final comparison decision is A > B. We partition the 

structure into five hierarchical prefixing sets, as depicted in 

Fig. 3, with the associated symbol representations in Tables I 

and II, where each set performs a specific function whose 

output serves as input to the next set, until the fifth set 

produces the output on the left bus and the right bus.The 

below symbols are usually used in implementation. Each 

symbol is represented by the corresponding logic gates.  The 

symbol will perform the operation represented by the logic 

gate and maximum fan in and fan outs are indicated as 2/4 

I.e., the maximum number of inputs are 2 and the maximum 

number of outputs are 4. These symbols are used to 

implement the several sets of operations. 
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Table I. Symbol Notation and Definitions 

 
    All cells (components) within each set operate in 

parallel, which is a key feature to increase operating speed 

while minimizing the transitions to a minimal set of 

leftmost bits needed for a correct decision. This prefixing 

set structure bounds the components’ fan-in and fan-out 

regardless of comparator bit width and eliminates heavily 

loaded global signals with parasitic components, thus 

improving the operating speed and reducing power 

consumption. Additionally, the OR-network’s fan-in and 

fan-out is limited by partitioning the buses into 4-b 

groupings of the input operands, thus reducing the 

capacitive load of each bus. 

 

III. COMPARATOR DESIGN DETAILS 

   We partition the structure into five hierarchical prefixing 

sets, as depicted in Fig.2 with the associated symbol 

representations in Tables I , where as each set performs a 

exact function whose output serves as input to the next set, 

in hope of the fifth set produces the output on the left bus 

and the right bus Every part of cells components within 

each set operate in parallel were as it’s a key feature to 

increase operating speed while minimizing the transitions 

to a minimal set of left most bits needed for a correct 

decision. This prefixing set structure bounds the 

components fan-in and fan-out regardless of comparator 

bit-width and eliminates heavily loaded global signals with 

parasitic components, thus improving the operating speed 

and reducing power consumption. In this section, we detail 

our comparator’s design Figure 2, which is based on using 

a novel parallel prefix tree Tables I and II contain symbols 

and definitions. Each set or groups of cells that produce 

output and serve as inputs to the next set in the hierarchy, 

with the exception of set 1, the outputs serve as inputs to 

several sets. Set 1 compares the N -bit operands A and B 

bit-by-bit, using a single level of N ᴪ Type cell. The ᴪ  type 

cells provide a Termination flag Dk to cells in sets 2 and 4, 

indicating whether the computation should terminate. 

These cells compute (where 0 ≤ k ≤ N − 1) . 

                         ᴪ:Dk =Ak ⊕ Bk                                     (1) 

 

A. Basic Architecture 0f 16 Bit Comparator Using 

Parallel Prefix Tree 

   For an  Ω type cell and the 4-b partition to which the cell 

belongs, bitwise comparison outcomes from set 1 provide 

information about the more significant bits in the cell’s Ω type 

cells, Set 5 consists of N Φ -type cells (two-input, 2-b-wide 

multiplexers). One input is (AK, Bk) and the other is 

hardwired to “00.” The select control input is based on the Ω 

type cell output from set 4. We define the 2-b as the left-bit 

code (AK) and the right-bit code (Bk), where all left-bit codes 

and all right-bit codes combine to form the left bus and the 

right bus, respectively. The Φ-type cells compute (where 0 ≤ k 

≤ N−1). 

                        Φ: = x  +  x (00)                            (2) 

 

 
Fig.3: Logic Gate Representations For Symbols. 

 

 The output  denotes the “greater-than,” “less-than,” or 

“equal to” final comparison decision. 

                                   (3) 

   Essentially, the 2-b code  can be realized by OR-ing all 

left bits and all right bits separately, as shown in the decision 

module , using an OR-gate network in the form of NOR-

NAND gates yielding a more optimum gate structure. We 

define the 2-b as the left-bit code (Ak) and the right-bit code 

(Bk), where all left-bit codes and all right-bit codes combine 

to form the left bus and the right bus, respectively. The Φ-type 

cells compute (where 0 ≤ k ≤ N−1). From left to right, the first 

four ∑3-type cells in set 3 combine the 4-b partition 

comparison outcomes from the one, two, three, and four 4-b 

partitions of set 2. Since the fourth ∑3-type cell has a fan-in of 

four, the number of levels in set 3 increases and set 3’s fifth 

∑3-type cell combines the comparison outcomes of the first 

16 MSBs with a fan-in of only two and a fan-out of one. 
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Fig4. Implementation details for the comparison 

resolution module (sets 1 through 5) and the decision 

module. 

IV. PROPOSED ARCHITECTURE 

A. Replacing With Multiplexer Logic  

    In this project the switching logic and the main block 

design is carried out by using mux logic to perform low 

power operations because , In electronics, a multiplexer (or 

mux) is a device that selects one of several analog or 

digital input signals and forwards the selected input into a 

single line. A multiplexer of 2n inputs has n select lines, 

which are used to select which input line to send to the 

output. Multiplexers are mainly used to increase the 

amount of data that can be sent over the network within a 

certain amount of time and bandwidth. A multiplexer is 

also called a data selector. An electronic multiplexer makes 

it possible for several signals to share one device or 

resource, for example one A/D converter or one 

communication line, instead of having one device per input 

signal. An electronic multiplexer can be considered as a 

multiple-input, single-output switch 

 
Fig5. Switch.  

B. Advantages By Using Multiplexr Based In Parallel 

Prefix Tree 

 Low power consumption by replacing the needed logics 

by multiplexer, because multiplexer operates at very low 

power switching transitions compared to buffer and other 

logical gates. Low delay compared to normal based 

comparator, which in turn defines the high speed 

operations. Less area consumption in terms of number of 

slices. Less number of Lut’s compared to existing 

approach. 

 
Fig6. Internal Schematic For Comparator For 64 Bit. 

 

 
Fig7. Simulation Result. 

TABLE II: Comparision of 16, 32 and 64 Bit Delay and 

Power Values of Scalable Comparator 

 

IV. CONCLUSION 

   In this project a scalable high-speed low-power Comparator 

designed using regular digital hardware structures consisting 

of two modules: the comparison resolution module and the 

decision module. These modules are structured as parallel 

prefix trees with repeated cells in the form of simple stages 

that are one gate level deep with a maximum fan out of 2.17, 

independent of the input bit width. This regularity allows 

simple prediction of comparator characteristics for arbitrary 

bit widths and is attractive for continued technology Scaling 
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and logic synthesis.These modules are structured as 

parallel prefix trees by using a normal flow. But in normal 

tree structure a delay of 16.5nsec, 16.2nsec, 20.0nsec and 

power of 0.47mw, 0.96mw,1.94 mw  has observed for 

16,32,64 bit sized comparators, but here a proof has made 

that by using multiplexer based technique  the delay of 

12.6nsec, 13.9nsec, 17.4nsec and power of 0.35mw, 

0.78mw,1.57 mw  has reduced  by using simulation on 

Xilinx under the device of xc3s500e-4fg320. In future 

scope ,the comparator bit size can increased to 128 

considering the fear factors like delay and power  as a 

important factors ,which should not be increased so that it 

can affect the performance of the  comparator. Future work 

will include additional circuit optimizations to further 

reduce the power dissipation by adapting dynamic and 

analog implementations for the comparator resolution 

module and a high-speed zero-detector circuit for the 

decision module. Given that our comparator is composed 

of two balanced timing modules, the structure can be 

divided into two or more pipeline stages with balanced 

delays, based on a set structure, to effectively increase the 

comparison throughput. 
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