

www.ijatir.org

ISSN 2348–2370

Vol.07,Issue.07,

July-2015,

Pages:1134-1138

Copyright @ 2015 IJATIR. All rights reserved.

Scalable Digital CMOS Comparator using a Parallel Prefix Tree
I. MOUNIKA

1
, L. R. SIVA

2

1
PG Scholar, Sri KS Raju Institute of Technology and Sciences, Hyderabad, Telangana, India.

2
Associate Professor, Sri KS Raju Institute of Technology and Sciences, Hyderabad, Telangana, India.

Abstract: Comparators are the key design elements for a

wide range of applications like scientific computation

(graphics and image/signal processing),test circuit

applications (jitter measurements, signature analyzers, and

built-in self test circuits) and for general-purpose processor

components (associative memories, load-store queue

buffers, translation look-aside buffers, branch target

buffers) and many other CPU argument comparison blocks

.In this project a 16,32,64 bit comparator architectures is

designed by using parallel prefix structure . This project

evaluates the successful results as per requirement and

specifications. In existing system ,the parallel prefix

structure is designed for 16 ,32 and 64 bit architectures and

the reports from the Xilinx tool concludes that for every bit

range doubles the delay , memory , LUT and power has

not doubled up to the mark. But In the proposed design of

my project, each and every element in the parallel prefix

structure will be replaced by universal logic (multiplexer)

and the obtained results will be compared with existed

design for the same device specifications. By performing

this modification in the architecture will leads to reduction

in power consumption and in delay parameters.

Keywords: Multiplexer, Parallel Prefix Tree Structure,

Bitwise Competition Logic (BCL).

I. INTRODUCTION
 Other comparator designs improve scalability and reduce

comparison delays using a hierarchical prefix tree structure

composed of 2-b comparators. These structures require

log2 N comparison levels, with each level consisting of

several cascaded logic gates. However, the delay and area

of these designs may be prohibitive for comparing wide

operands. The prefix tree structure’s area and power

consumption can be improved by leveraging two-input

multiplexers (instead of 2-b comparator cells) at each level

and generate-propagate logic cells on the first level (instead

of 2-b adder cells), which takes advantage of one’s

complement addition. Using this logic composition, a

prefix tree requires six levels for the most common

comparison bit width of 64 bits, but suffers from high

power consumption due to every cell in the structure being

active, regardless of the input operands’ values.

Furthermore, the structure can perform only “greater-than”

or “less-than” comparisons and not equality. To improve

the speed and reduce power consumption, several designs

rely on pipelining and power-down mechanisms to reduce

switching activity with respect to the actual input operands’

bit values. One design uses all-N transistor (ANT) circuits to

compensate for high fan-in with high pipeline throughput.

 A 64-b comparator requires only three pipeline cycles using

a multiphase clocking scheme. However, such a clocking

scheme may be unsuitable for high-speed single-cycle

processors because of several heavily loaded global clock

signals that have high-power transition activity. Additionally,

race conditions and a heavily constrained clock jitter margin

may make this design unsuitable for wide-range comparators.

An alternative architecture leverages priority-encoder

magnitude decision logic with two pipelined operations that

are triggered at both the falling and rising clock edges to

improve operating speed and eliminate long dynamic logic

chains. However, 64-b and wider comparators require a

multilevel cascade structure, with each logic level consisting

of seven nMOS transistors connected in series that behave in

saturating mode during operation. This structure leads to a

large overall conductive resistance, with heavily loaded

parasitic components on the clock signal, which severely

limits the clock speed and jitter margin. Other architectures

use a multiplexer-based structure to split a 64-b comparator

into two comparator stages: the first stage consists of eight

modules performing 8-b comparisons and the modules’

outputs are input into a priority encoder and the second stage

uses an 8-to-1 multiplexer to select the appropriate result from

the eight modules in the first stage.

 Similarly, other energy-efficient designs leverage schemes

toreduce switching activity. Compute-on demand comparators

compare two binary numbers one bit at a time, rippling from

the most significant bit (MSB) to the least significant bit

(LSB). The outcome of each bit comparison either enables the

comparison of the next bit if the bits are equal, or represents

the final comparison decision if the bits are different. Thus, a

comparison cell is activated only if all bits of greater

significance are equal. Although these designs reduce

switching, they suffer from long worst case comparison delays

for wide worst case operands. To reduce the long delays

suffered by bitwise ripple designs, an enhanced architecture

incorporates an algorithm that uses no arithmetic operations.

This scheme detects the larger operand by determining which

operand possesses the leftmost 1 bit after pre-encoding, before

supplying the operands to bitwise competition logic (BCL)

I. MOUNIKA, L. R. SIVA

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.07, July-2015, Pages: 1134-1138

structure. The BCL structure partitions the operands into 8-

b blocks and the result for each block is input into a

multiplexer to determine the final comparison decision.

Due to this BCL-based design’s low transistor count, this

design has the potential for low power consumption, but

the pre-encoder logic modules preceding the BCL modules

limit the maximum achievable operating frequency. In

addition, special control logic is needed to enable the BCL

units to switch dynamically in a synchronized fashion, thus

increasing the power consumption and reducing the

operating frequency.

Fig.1. Block diagram of our comparator architecture,

consisting of acomparison resolution module connected

to a decision module.

 To alleviate some of the drawbacks of previous designs

(such as high power consumption, multi cycle

computation, custom structures unsuitable for continued

technology scaling, long time to market due to irregular

VLSI structures, and irregular transistor geometry sizes), in

this paper we leverage standard CMOS cells to architect

fast, scalable, wide-range, and power-efficient algorithmic

comparators with the following key features.

II. COMPARATOR ARCHITECTURAL OVERVIEW

 The comparison resolution module in Fig. 1 (which

depicts the high-level architecture of our proposed design)

is a novel MSB-to-LSB parallel-prefix tree structure that

performs bitwise comparison of two N-bit operands A and

B, denoted as AN−1, AN−2, . . ., A0 and BN−1, BN−2, . .

., B0, where the subscripts range from N–1 for the MSB to

0 for the LSB. The comparison resolution module performs

the bitwise comparison asynchronously from left to right,

such that the comparison logic’s computation is triggered

only if all bits of greater significance are equal. The

parallel structure encodes the bitwise comparison results

into two N-bit buses, the left bus and the right bus, each of

which store the partial comparison result as each bit

position is evaluated, such that

if Ak > Bk, then leftk = 1 and rightk = 0

if Ak < Bk , then leftk = 0 and rightk = 1

if Ak = Bk , then leftk = 0 and rightk = 0.

 In addition, to reduce switching activities, as soon as a

bitwise comparison is not equal, the bitwise comparison of

every bit of lower significance is terminated and all such

positions are set to zero on both buses, thus, there is never

more than one high bit on either bus. The decision module

uses two OR-networks to output the final comparison decision

based on separate OR-scans of all of the bits on the left bus

(producing the L bit) and all of the bits on the right bus

(producing the R bit). If LR = 00, then A = B, if LR = 10 then

A > B, if LR = 01 then A < B, and LR = 11 is not possible. An

8-b comparison of input operands A = 01011101 and B =

01101001 is illustrated in Fig. 2. In the first step, a parallel

prefix tree structure generates the encoded data on the left bus

and right bus for each pair of corresponding bits from A and

B. In the above example, A7 = 0 and B7 = 0 encodes as left7

= right7 = 0, A6 = 1, and B6 = 1 encodes as left6 = right6 = 0,

and A5 = 0 and B5 = 1 encodes left5 = 0 and right5 = 1. At

this point, since the bits are unequal, the comparison

terminates and a final comparison decision can be made based

on the first three bits evaluated.

Fig. 2. Example 8-b comparison.

 The parallel prefix structure forces all bits of lesser

significance on each bus to 0, regardless of the remaining bit

values in the operands. In the second step, the OR-networks

perform the bus OR-scans, resulting in 0 and 1, respectively,

and the final comparison decision is A > B. We partition the

structure into five hierarchical prefixing sets, as depicted in

Fig. 3, with the associated symbol representations in Tables I

and II, where each set performs a specific function whose

output serves as input to the next set, until the fifth set

produces the output on the left bus and the right bus.The

below symbols are usually used in implementation. Each

symbol is represented by the corresponding logic gates. The

symbol will perform the operation represented by the logic

gate and maximum fan in and fan outs are indicated as 2/4

I.e., the maximum number of inputs are 2 and the maximum

number of outputs are 4. These symbols are used to

implement the several sets of operations.

Scalable Digital CMOS Comparator using a Parallel Prefix Tree

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.07, July-2015, Pages: 1134-1138

Table I. Symbol Notation and Definitions

 All cells (components) within each set operate in

parallel, which is a key feature to increase operating speed

while minimizing the transitions to a minimal set of

leftmost bits needed for a correct decision. This prefixing

set structure bounds the components’ fan-in and fan-out

regardless of comparator bit width and eliminates heavily

loaded global signals with parasitic components, thus

improving the operating speed and reducing power

consumption. Additionally, the OR-network’s fan-in and

fan-out is limited by partitioning the buses into 4-b

groupings of the input operands, thus reducing the

capacitive load of each bus.

III. COMPARATOR DESIGN DETAILS

 We partition the structure into five hierarchical prefixing

sets, as depicted in Fig.2 with the associated symbol

representations in Tables I , where as each set performs a

exact function whose output serves as input to the next set,

in hope of the fifth set produces the output on the left bus

and the right bus Every part of cells components within

each set operate in parallel were as it’s a key feature to

increase operating speed while minimizing the transitions

to a minimal set of left most bits needed for a correct

decision. This prefixing set structure bounds the

components fan-in and fan-out regardless of comparator

bit-width and eliminates heavily loaded global signals with

parasitic components, thus improving the operating speed

and reducing power consumption. In this section, we detail

our comparator’s design Figure 2, which is based on using

a novel parallel prefix tree Tables I and II contain symbols

and definitions. Each set or groups of cells that produce

output and serve as inputs to the next set in the hierarchy,

with the exception of set 1, the outputs serve as inputs to

several sets. Set 1 compares the N -bit operands A and B

bit-by-bit, using a single level of N ᴪ Type cell. The ᴪ type

cells provide a Termination flag Dk to cells in sets 2 and 4,

indicating whether the computation should terminate.

These cells compute (where 0 ≤ k ≤ N − 1) .

 ᴪ:Dk =Ak ⊕ Bk (1)

A. Basic Architecture 0f 16 Bit Comparator Using

Parallel Prefix Tree

 For an Ω type cell and the 4-b partition to which the cell

belongs, bitwise comparison outcomes from set 1 provide

information about the more significant bits in the cell’s Ω type

cells, Set 5 consists of N Φ -type cells (two-input, 2-b-wide

multiplexers). One input is (AK, Bk) and the other is

hardwired to “00.” The select control input is based on the Ω

type cell output from set 4. We define the 2-b as the left-bit

code (AK) and the right-bit code (Bk), where all left-bit codes

and all right-bit codes combine to form the left bus and the

right bus, respectively. The Φ-type cells compute (where 0 ≤ k

≤ N−1).

 Φ: = x + x (00) (2)

Fig.3: Logic Gate Representations For Symbols.

 The output denotes the “greater-than,” “less-than,” or

“equal to” final comparison decision.

 (3)

 Essentially, the 2-b code can be realized by OR-ing all

left bits and all right bits separately, as shown in the decision

module , using an OR-gate network in the form of NOR-

NAND gates yielding a more optimum gate structure. We

define the 2-b as the left-bit code (Ak) and the right-bit code

(Bk), where all left-bit codes and all right-bit codes combine

to form the left bus and the right bus, respectively. The Φ-type

cells compute (where 0 ≤ k ≤ N−1). From left to right, the first

four ∑3-type cells in set 3 combine the 4-b partition

comparison outcomes from the one, two, three, and four 4-b

partitions of set 2. Since the fourth ∑3-type cell has a fan-in of

four, the number of levels in set 3 increases and set 3’s fifth

∑3-type cell combines the comparison outcomes of the first

16 MSBs with a fan-in of only two and a fan-out of one.

I. MOUNIKA, L. R. SIVA

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.07, July-2015, Pages: 1134-1138

Fig4. Implementation details for the comparison

resolution module (sets 1 through 5) and the decision

module.

IV. PROPOSED ARCHITECTURE

A. Replacing With Multiplexer Logic

 In this project the switching logic and the main block

design is carried out by using mux logic to perform low

power operations because , In electronics, a multiplexer (or

mux) is a device that selects one of several analog or

digital input signals and forwards the selected input into a

single line. A multiplexer of 2n inputs has n select lines,

which are used to select which input line to send to the

output. Multiplexers are mainly used to increase the

amount of data that can be sent over the network within a

certain amount of time and bandwidth. A multiplexer is

also called a data selector. An electronic multiplexer makes

it possible for several signals to share one device or

resource, for example one A/D converter or one

communication line, instead of having one device per input

signal. An electronic multiplexer can be considered as a

multiple-input, single-output switch

Fig5. Switch.

B. Advantages By Using Multiplexr Based In Parallel

Prefix Tree

 Low power consumption by replacing the needed logics

by multiplexer, because multiplexer operates at very low

power switching transitions compared to buffer and other

logical gates. Low delay compared to normal based

comparator, which in turn defines the high speed

operations. Less area consumption in terms of number of

slices. Less number of Lut’s compared to existing

approach.

Fig6. Internal Schematic For Comparator For 64 Bit.

Fig7. Simulation Result.

TABLE II: Comparision of 16, 32 and 64 Bit Delay and

Power Values of Scalable Comparator

IV. CONCLUSION

 In this project a scalable high-speed low-power Comparator

designed using regular digital hardware structures consisting

of two modules: the comparison resolution module and the

decision module. These modules are structured as parallel

prefix trees with repeated cells in the form of simple stages

that are one gate level deep with a maximum fan out of 2.17,

independent of the input bit width. This regularity allows

simple prediction of comparator characteristics for arbitrary

bit widths and is attractive for continued technology Scaling

Scalable Digital CMOS Comparator using a Parallel Prefix Tree

International Journal of Advanced Technology and Innovative Research

Volume.07, IssueNo.07, July-2015, Pages: 1134-1138

and logic synthesis.These modules are structured as

parallel prefix trees by using a normal flow. But in normal

tree structure a delay of 16.5nsec, 16.2nsec, 20.0nsec and

power of 0.47mw, 0.96mw,1.94 mw has observed for

16,32,64 bit sized comparators, but here a proof has made

that by using multiplexer based technique the delay of

12.6nsec, 13.9nsec, 17.4nsec and power of 0.35mw,

0.78mw,1.57 mw has reduced by using simulation on

Xilinx under the device of xc3s500e-4fg320. In future

scope ,the comparator bit size can increased to 128

considering the fear factors like delay and power as a

important factors ,which should not be increased so that it

can affect the performance of the comparator. Future work

will include additional circuit optimizations to further

reduce the power dissipation by adapting dynamic and

analog implementations for the comparator resolution

module and a high-speed zero-detector circuit for the

decision module. Given that our comparator is composed

of two balanced timing modules, the structure can be

divided into two or more pipeline stages with balanced

delays, based on a set structure, to effectively increase the

comparison throughput.

V. REFERENCES
[1] H. J. R. Liu and H. Yao, High-Performance VLSI

Signal Processing Innovative Architectures and

Algorithms, vol. 2. Piscataway, NJ: IEEE Press, 1998.

[2] Y. Sheng and W. Wang, “Design and implementation

of compression algorithm comparator for digital image

processing on component,” in Proc. 9th Int. Conf. Young

Comput. Sci., Nov. 2008, pp. 1337–1341.

[3] B. Parhami, “Efficient hamming weight comparators

for binary vectors based on accumulative and up/down

parallel counters,” IEEE Trans. Circuits Syst., vol. 56, no.

2, pp. 167 171, Feb. 2009.

[4] A. H. Chan and G. W. Roberts, “A jitter

characterization system using a component-invariant

Vernier delay line,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 12, no. 1, pp. 79–95, Jan. 2004.

[5] M. Abramovici, M. A. Breuer, and A. D. Friedman,

Digital Systems Testing and Testable Design, Piscataway,

NJ: IEEE Press, 1990.

[6] H. Suzuki, C. H. Kim, and K. Roy, “Fast tag

comparator using diode partitioned domino for 64-bit

microprocessor,” IEEE Trans. Circuits Syst. I, vol. 54, no.

2, pp. 322–328, Feb. 2007.

 [7] D. V. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose,

“Energy efficient comparators for superscalar data paths,”

IEEE Trans. Comput., vol. 53, no. 7, pp. 892–904, Jul.

2004.

[8] V. G. Oklobdzija, “An algorithmic and novel design of

a leading zero detector circuit: Comparison with logic

synthesis,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 2, no. 1, pp. 124–128, Mar. 1994.

[9] H. L. Helms, High Speed (HC/HCT) CMOS Guide.

Englewood Cliffs, NJ: Prentice-Hall, 1989.

[10] SN7485 4-bit Magnitude Comparators, Texas

Instruments, Dallas, TX, 1999.

