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Abstract: In this paper, we tend to show however a network 

will allow its peers to verify variety of nontrivial properties 

of its inter domain routing selections while not revealing any 

further information. If all the properties hold, the peers learn 

nothing beyond what the inter domain routing protocol 

already reveals; if a property doesn’t hold, a minimum of 

one peer will notice this and prove the violation. We tend to 

gift SPIDeR, a sensible system that applies this approach to 

the Border entree Protocol, and we report results from AN 

experimental analysis to demonstrate that SPIDeR 

encompasses a cheap overhead. Some aspects could also be 

unconcealed to neighbors, enclosed in a very route written 

record, or exposed indirectly via glass services, however we 

tend to cannot expect network operators to conform to use 

any system that reveals even a lot of their private Cinfo. 

Existing work has shown that it’s attainable to make 

deductions concerning that Cautonomous systems area unit 

connected, and even concerning some aspects of policy 

however these inferences have restricted accuracy and 

require extended effort to hold out, creating them unsuitable 

for substantiate routing selections. 

 

Keywords: Collaborative Verification, Interdomain Routing, 

Privacy, Security. 

I. INTRODUCTION 

   In inter domainrouting; there is an inherent tension 

between verifiability and privacy: both properties are 

desirable, but they seem contradictory. Communicating 

networks have expectations about one another's routing 

decisions, but they are stymied from verifying these 

expectations because routing configurations are usually kept 

confidential. Routing promises. Inter domain routing policies 

are routinely governed by formal agreements, such as 

peering and transit contracts, and the correct implementation 

of these policies is vital for allowing networks to achieve 

other contractual goals, such as maintaining traffic ratios. In 

some cases, such as „partial transit‟ relationships, the desired 

policy can be complex, placing additional cost on the 

implementers. 

 

II. EXISTING AND PROPOSED SYSTEMS 

A. Existing System  

  Existing secure interdomain routing protocols can verify 

validity properties about individual routes, such as whether 

they correspond to a real network path. It is often useful to 

verify more complex properties relating to the route decision 

procedure – for example, whether the chosen route was the 

best one available, or whether it was consistent with the 

network's peering agreements.  

 

B. Proposed System  

   We show how a network can allow its peers to verify a 

number of nontrivial properties of its inter domain routing 

decisions without revealing any additional information. If all 

the properties hold, the peers learn nothing beyond what the 

inter domain routing protocol already reveals; if a property 

does not hold, at least one peer can detect this and prove the 

violation. We present SPIDeR, a practical system that 

applies this approach to the Border Gateway Protocol, and 

we report results from an experimental evaluation to 

demonstrate that SPIDeR has a reasonable overhead.  

 

III. MODULES 

1. User Interface Design  

2. Data Upload  

3. Key Generate & File Sharing  

4. Key Request to Data Owner  

5. Data Share In Inter Domain  

 

A. User Interface Design  

   This is the first module of our project. The important role 

for the user is to move login window to data owner window. 

This module has created for the security purpose. In this 

login page we have to enter login user id and password. It 

will check username and password is match or not (valid 

user id and valid password). If we enter any invalid 

username or password we can’t enter into login window to 

user window it will shows error message. So we are 

preventing from unauthorized user entering into the login 

window to user window. It will provide a good security for 

our project. So server contain user id and password server 

also check the authentication of the user. It well improves 

the security and preventing from unauthorized data owner 

enters into the network. In our project we are using SWING 

for creating design. Here we validate the login user and 

server authentication.  

 

B. Data Upload 

   This module is used to help the user to uploading the files. 

At the time of login, the user could be a valid user means 

only they allowed uploading their files.  
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C. Key Generate & File Sharing  

  In this module is used to help the Group member to encrypt 

the files and check their file is in safe also providing 

protection.  Key Generation is the process for generating 

keys to our files. That key will have to be a unique for every 

group member while at the time of receives.  

 

D. Key Request to Data Owner  

The file is only view format so the file is share and download 

purpose in Request send to the data owner, the data owner is 

check the request and user was authorized person so data 

owner response and key provide to the user. 

 

E. Data Share in Inter Domain  

  The key was provide to the data owner the user is get the 

owner ship So user was share the file and download the file. 

 

IV. EVALUATION 

   Next, we report results from an experimental evaluation of 

SPIDeR. Our goal is to answer two high-level questions: 1) 

is SPIDeR practical?, and 2) how expensive is SPIDeR? To 

provide a baseline for comparisons, we aligned our 

experiments with those from the Net Review paper. Net 

Review is a good baseline for SPIDeR because it can also 

verify promises about intersdomain routing policies, and can 

also be deployed as a companion protocol to BGP. However, 

NetReview requires ASes to disclose a lot of sensitive 

information, whereas SPIDeR is designed to provide strong 

privacy guarantees. 

 

A. Prototype Implementation 

   For our experiments, we built a proof-of-concept 

implementation of SPIDeR, including a recorder, a proof 

generator, and a checker. For the recorder, we reused some 

code from NetReview, specifically the component for 

mirroring BGP routing state from existing 

 
Fig 1. AS topology for our experiments aRouteViews 

trace is injected at AS 2. 

 

   Routers and the component for maintaining a tamper-

evident message log with signatures and acknowledgments 

(but not the code for auditing, which is different in SPIDeR). 

We added code for the MTT and for generating 

commitments; the proof generator and checker are written 

from scratch. Overall, we added or changed8,012 lines of 

C++ code. We chose RSA-1024 signatures and the SHA-512 

hash function, but we use only the first 20 bytes of each 

digest to save space. The CSPRNG is implemented by 

encrypting sequences of zeroes withRC4, discarding the first 

3,072 bytes to mitigate known weaknesses in RC4. Our 

recorder implementation uses separate threads for handling 

messages and for generating commitments; this prevents the 

message handler from blocking while MTTs are being 

labeled. The number c of commitment threads can be varied 

to take advantage of multiple cores; when c> 1, we break the 

MTT into sub trees that are each labeled completely by one 

of the threads. 

 

B. Methodology and experimental setup 

    Our goal was to estimate the cost a typical Internet AS 

would incurby running SPIDeR. Since it was not feasible to 

replicate the Internet’s entire AS topology in our lab, we 

decided to set up a small, synthetic topology (shown in 

Fig.1) using 36 Quagga BGP daemonsin 10 A Ses. However, 

as, we injected BGP messages from a RouteViews trace into 

one of the ASes. Thus, the conditions in our synthetic 

topology were approximately as if the ASeshad been a part 

of the global Internet: the routing tables containedroutes to 

every reachable IP prefix, and the number and the arrival 

pattern of the BGP UPDATEs were similar to the conditions 

at the RouteViews collection point. Specifically, we used a 

15-minute Route Views trace that was collectedby a Zebra 

router at Equinix in Ashburn, VA, on January 18, 2012 at 

10am. This trace contains 38,696 BGP messages, and the 

corresponding RIB snapshot contains 391,028 distinct IP 

prefixes. IN our experiment, we first populated the routing 

tables by slowly announcing the prefixes from the snapshot 

over a period of 30 minutes; then we replayed the 15-minute 

message trace. We refer to the first phase as the setup period 

and to the second phase as there play period. Unless 

otherwise specified, we report data that was collected during 

the replay period, and we focus on the AS in the middle (AS 

5). 

 
Fig 2. Cost of commitments, existence proofs (EP), and 

non-existence proofs(NEP) with zero-knowledge sets 

instead of MTTs. Values shown are for AS 5.Note that we 

used a single core for this experiment; for a fair 

comparison toSPIDeR, the runtimes should be divided by 

c=3. 

 

  Each AS was configured with a simple routing policy based 

onGao-Rexford defined 50 indifference classes based on the 

number of hops, and promised to choose the shortest route to 

all prefixesin the BGP routing Fig.2 table. These simple 

choices are sufficient for measuring overhead because the 

cost depends mostly on the size of the MTT and thus on the 
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number of prefixes and indifference classes. Recall from 

Section 3 that only very few A Sessupport more than five 

local-pref classes, and consider that promises could be made 

for a specific set of prefixes (“I will give you my shortest 

route to Google”); hence, 50 classes and all prefixes are both 

conservative choices. We ran our experiments on a cluster of 

11 machines that were connected by a 1 Gb Ethernet 

network. Each machine had a 2.4 GHzIntel X3220 CPU with 

four cores and 4 GB RAM, and ran FedoraCore 10 (Linux 

2.6.27.41). For the BGP daemon, we used Quagga 0.99.20 

with a 100-line patch that enables the daemon to bind to a 

specific IP. Commitments were generated every 60 seconds. 

Unless otherwise specified, we used c = 3 cores for 

commitments and the fourth core for message handling. 

 

C. Micro-benchmarks 

  We first ran a number of micro-benchmarks to measure the 

size of atypical MTT, and the time needed to generate and 

verify proofs. 

 

1. MTT size: The MTT from AS 5’s last commitment in the 

experiment contains 22,333,767 nodes, including 389,653 

prefix nodes, 950,372 inner nodes, 1,511,092 dummy nodes, 

and 19,482,650 bitnodes. This is expected because there is 

one prefix node for each IP prefix that is reachable at that 

point in the trace, and each prefix node has 50 bit nodes. In 

total, these nodes required about137.5 MB of memory. 

 

2. Labeling time: With c = 3 cores, computing the label of 

this MTT’s root node took 13.4 seconds. This seems 

unproblematic because the computation is done by the 

recorder (and not by a border router!) and because it is 

asynchronous, i.e., does not block BGP. Thus, an AS could 

use our implementation to make a commitment every 15 

seconds and catch any promise violations that last at least 

that long. For comparison, the same computation took 38.8 

seconds with only c = 1 core, so the speed-up for c = 3 is 2.9. 

This is expected because MTT labeling is highly scalable. 

Because of this, shorter intervals could be achieved by 

adding more cores, or even additional machines. 

 

3. Proof generation and proof size: When verification is 

triggered, the proof generator must reconstruct the MTT at 

the time of the commitment and then generate a set of bit 

proofs for each neighbor. For AS 5’s last commitment, it 

took 13.4 s to reconstruct the MTT and 70.2 s to generate the 

proofs for the five neighbors. The average size of a proof 

was 449 MB. As a rough approximation, each bit proof with 

k indifference classes contributes k hashes, or 20.k bytes, 

plus potentially some hashes of dummy nodes. For 

comparison, we also generated the proofs for an alternative 

promise about just one prefix: “I will give you the shortest 

route to Google.” This took only 0.431 s to generate (after 

MTT reconstruction), and the corresponding proofs were 2.1 

KB for the producers and 2.1 KB for the consumers. If an 

AS wants to make promises about very many prefixes and 

proof size is a concern, its neighbors could trigger 

verification for smaller sub trees, e.g., all prefixes in 

32.0.0.0/8. 

4. Proof checking: With c = 1 core, verification of a single 

proof takes 27 s on average; we observed times from 8.6 s to 

40 s. As a first step, the checker needs to rebuild the part of 

the MTT that is included in the proof and re-label it to verify 

the commitment; this step took 26 s on average. Then, the 

checker must verify that all the required bits are present and 

have the appropriate value; this step accounted for the 

remaining 1 s. 

 

D. Functionality check 

    Next, we performed a number of sanity checks on our 

implementation. First, we ran the experiment to completion 

and then triggered verification; as expected, no broken 

promises were reported. Next, we re-ran the experiment, 

injecting different faults into AS 5 that caused its promise to 

be violated: 

1. Overaggressive filter: The AS incorrectly filters out a 

good route from an upstream AS. 

2. Wrongly exporting: A received route is marked as ‘not 

for export’ (with a promise where some routes are worse 

than the null route) but the AS passes it on. 

3. Tampered bit proof: The AS attempts to hide a good 

route by changing a bit in the bit proof sent to a 

downstream AS. 

 

     After each run, we triggered verification, and in each case 

the fault was detected by one of the ASes. In the first run, the 

upstream ASraised an alarm because it did not receive a bit 

proof for the route ithad supplied. In the second run, the 

downstream AS noticed that ithad a bit proof for the null 

route, which was better than the route ithad actually 

received. In the third run, the downstream AS detected that 

the proof did not match the hash value from the 

commitment. These examples complement the proofs to give 

us confidence in our implementation. 

 

E. Overhead: Computation 

       The SPIDeR recorder performs two kinds of operations 

that are computationally expensive: It signs messages and 

ACKs, and it generates and labels a MTT for each 

commitment. To quantify this overhead, we used the get 

usage system call to measure the computation time the 

recorder’s threads spent overall, and we separately 

instrumented the code to measure the time spent on 

generating and verifying signatures and on labeling MTTs. 

We excluded the first and the last minute to avoid 

startup/shutdown effects. We found that, during the replay 

period, the recorder spent634.5 s of computation time 

overall. 9.75 s were spent on generating and verifying 3,913 

RSA-1024 signatures; note that this is lower than the total 

number of BGP updates in the trace because, when updates 

arrive in bursts, the recorder can batch several of them 

together and sign the entire batch. Generating 13 MTTs 

required519 s. All other operations, e.g., BGP RIB 

maintenance, account for the remaining 105.75 s. Averaged 

over the entire 13 minutes, a single X3220 core would have 

been about 81.3% utilized. Since we reuse its messaging 

code, NetReview would have incurred exactly the same 

costs, except for the MTT generation; thus, NetReview’s 
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CPU utilization would have been about five times lower. 

SPIDeR’s computational cost increases with the 

commitment generation rate, and with the number of routing 

updates that need to be sent (which in turn depends on the 

number of neighbors), sincethere are more messages that 

need signing. For a small AS withfive neighbors, like AS 5, 

the SPIDeR recorder could easily be runon a single 

commodity workstation. According to CAIDA’s 

topologydata, 89% of the current Internet ASes have five or 

fewer neighbors. 

 

F. Overhead: Bandwidth 

  SPIDeR increases the amount of interdomain routing traffic 

because all BGP updates need to be re-announced via 

SPIDeR with additional signatures and acknowledgments. 

To quantify this overhead, we used tcpdump to capture all 

BGP packets and all SPIDeR packets that were sent from AS 

5 during the replay period. We found that, on average, BGP 

sent traffic at a rate of 11.8 kbps and SPIDeR at a rate of 

32.6 kbps. The relative increase (176%) may seem high, but 

compared to the amount of traffic ASes commonly handle, 

20.8 kbps is not very much—it is about 2% of a single 

typicalDSL upstream. SPIDeR additionally sends bit proofs 

to neighboring ASesfor verification; the amount depends on 

the frequency of verifications and the number of 

commitments checked which in turn depend on perceived 

AS needs. Verifying 1% of commitments every minute 

would result in about 3.0 Mbps of traffic for AS 5. 

 

G. Overhead: Storage 

    Each SPIDeR recorder requires some local storage for the 

message log, the information needed to reconstruct past 

MTTs, and a number of snapshots of its routing state. To 

quantify the amount of storage needed, we examined the 

storage of AS 5’s recorder after the replay period. We 

excluded information that was stored during the setup 

period. The log contained 2.95 MB of message data, 

excluding snapshots; a substantial fraction (24.4%) consisted 

of cryptographic signatures. Thus, it grew at an average rate 

of about 232.3 kBper minute. Complete snapshots of the 

routing state were about94.1 MB. All of this information 

would be stored by Net Reviewas well. The only addition in 

SPIDeR is the MTT-related data, which was comparatively 

small: each commitment added only 32 bytes to the log. This 

is because the MTT can be regenerated from the message 

trace; only the CSPRNG’s seed needs to be stored explicitly. 

Based on these results, we estimate that an AS could keep 

ayear’s worth of logs, including one snapshot per day, in 

145.7 GB of storage. This data would easily fit onto a 

commodity hard drive. 

 

V. RESULTS 

   The data owner verifies whether the key request has come 

from the authorized user or not. If the request is from the 

authorized user it accepts the key request and sends the key. 

The receiver after receiving the key from the data owner 

enters the key and can download/share the data with the 

other users in the network. Thus, the data privacy and user 

verifiability is attained. 

 
Fig3. Registration 

 

 
Fig4. Login 

 

 
Fig5. Data Upload 

 

 
Fig6. Sharing data with the other user in the network. 
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Fig7. Key request to data owner 

 

 
Fig8. Data owner accepting the key request from the 

authorized user. 

VI. CONCLUSION 

   This paper has shown that interdomain routing systems do 

not need to make a choice between verifiability and privacy: 

it is possible to have both. Using our VPref algorithm for 

collaborative verification, networks can verify a number of 

nontrivial promises about each other’s' BGP routing 

decisions without revealing anything that BGP would not 

already reveal. The results from our evaluation of SPIDeR 

show that the costs for the participating networks would be 

reasonable. VPref is not BGP-specific and could be applied 

to other routing protocols, or perhaps even to private 

verification tasks in other domains 
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