Downlink Baseband Receiver for Mobile WMAN That is Applied in the STBC-OFDM System by using Ping-Pong Algorithm

S. ASHOK KUMAR 1, K. MAHESWARI 2

1PG Scholar, Dept of ECE, Gates Institute of Technology, Gooty, Anantapur, AP, India, Email: ashok.kumar9292@gmail.com.
2Assoc Prof, Dept of ECE, Gates Institute of Technology, Gooty, Anantapur, AP, India, Email: kmaheswari2009@gmail.com.

Abstract: A novel match filter is proposed to precisely detect symbol boundary. Moreover, a ping-pong algorithm is presented to improve the performance of carrier frequency synchronization. Then, we propose a two-stage channel estimator to accurately estimate CSI over fast fading channels. (MPIC)-Based de-correlation to identify significant the initialization stage uses discrete Fourier transform (DFT)-based channel estimation with the multipath interference cancellation channel paths. The tracking stage uses decision-feedback (DF) DFT-based channel estimation with Newton’s method to track the gain variations of these paths implemented in xilinx 12.3i using verilog language.

Keywords: Baseband Receiver, Channel Estimator, Space Time Block Code-Orthogonal Frequency Division Multiplexing (STBC-OFDM) System, Synchronizer, Wireless Metropolitan Area Network (WMAN).

I. INTRODUCTION

Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) techniques have been recently considered in the panorama of ongoing and future multimedia mobile communications due to their robustness to frequency-selective fading and their flexibility in handling multiple data rates. Nowadays, MIMO-OFDM techniques present some well-promising applications in wireless standards like IEEE 802.11n, E-UTRAN Long Term Evolution (LTE), and IEEE 802.16x (Wi-Max) [2]. Different Space-Time (ST) processing techniques have been proposed in the literature in order to fully exploit the potentialities of MIMO systems. The most popular one is Space-Time Coding in which the time dimension is complemented with the spatial dimension inherent to the use of multiple spatially-distributed antennas. Commonly used ST coding schemes are ST-trellis codes and ST block codes (STBC). A well-known example of conceptually simple, computationally efficient and mathematically elegant STBC scheme has been proposed by Alamouti. Substantially, Alamouti’s coding is an orthogonal ST block code where two successive symbols are encoded in an orthogonal 2x2 matrix. The columns of the matrix are transmitted in successive symbol periods, but the upper and the lower symbols in a given column are sent simultaneously through the first and the second transmit antennas, respectively. The alternative solution to ST coding is represented by Spatial Multiplexing (SM). Spatial multiplexing is a space-time modulation technique whose core idea is to send independent data streams from each transmit antenna. This is motivated by the spatially white property of the distribution which achieves capacity in MIMO i.i.d. Rayleigh matrix channels. SM is addressed to push up link capacity rather than to exploit spatial diversity.

The tradeoff is between spatial diversity exploitation (STBC) and capacity boosting (SM). Such tradeoff has been theoretically studied by Heath and Paulraj and some simulation results have been shown for a switch criterion from STBC to SM (and vice-versa) based on the minimum Euclidean distance of the received codebook. Recent contributions presented in literature are aimed at proposing practical solutions for MIMO-OFDM ST processing to be specifically applied in the framework of on-going wireless standards. Bian et. al. considered a range of MIMO-OFDM architectures for use in urban hotspots in the framework of IEEE 802.11n. Link adaptation drives the choice of the space-time signal processing. In the urban areas tested 2% of the covered locations selected the SM scheme, 50% selected the STBC scheme, and 48% selected a hybrid SM/STBC scheme. The combination of SM and adaptive beam forming in MIMO-OFDM systems for IEEE 802.16e WMAN standard has been studied by Chung, Yung and Choi, Aruna and Suganthi proposed a variable power adaptive MIMO-OFDM STBC for Wi-Max in order to provide flexible data-rate services while satisfying low delay requirements in the presence of imperfect CSI knowledge.

A. Motivation

An efficient solution from a computational viewpoint is presented. The architecture is designed by considering a cost function based on the execution time and the FPGA resources parameters. Finding a suitable solution is a matter of trading off these two parameters. The proposed solution exploits the maximum operation parallelism in order to reduce the execution time. On the other hand, to minimize the number of required resources, basic real operators are used, such as multipliers, adders, and CORDIC dividers. Moreover, the use of integrated processors and high accuracy operators is avoided to preserve the initial trade-
The inputs of the system are the received signal matrix Y and the estimated channel matrix H. All the signals are complex variables, so real operators must be combined to perform this operation. This is done minimizing the number of operators, such as avoiding complex divisions (which would need a large amount of resources), replacing them with complex multiplications followed by real divisions.

Fig. 1 shows the evolution of current services and networks to the aim of combining them into a unified third generation network. Many currently separate systems and services such as radio paging, cordless telephony, satellite phones and private radio systems for companies etc will be combined so that all these services will be provided by third generation telecommunications systems the parallel operators which compute the decoding operation with the coefficients α and β. The final outputs are the interference-free decoded OFDM symbols obtained by solving the linear system but extended for the 4x4 case. In order to evaluate the implementation of the subtractive 4x4 OFDM-MIMO combiner considered in this paper, a Xilinx Spartan FPGA has been used. For the specification, synthesis, and implementation, System Generator and Xilinx ISE have been used.

Fig. 1. Evolution of current networks to the next generation of wireless networks.

This paper is organized as follows. Section II OFDM Generation, Section III Space-Time Block Coding in Section IV Architecture and Circuit Design. Then, the simulation and implementation results is provided in Section V. Finally, Section VI is the conclusions.

II. OFDM GENERATION

To generate OFDM successfully the relationship between all the carriers must be carefully controlled to maintain the Orthogonality of the carriers. For this reason, OFDM is generated by firstly choosing the spectrum required, based on the input data, and modulation scheme used. Each carrier to be produced is assigned some data to transmit. The required amplitude and phase of the carrier is then calculated based on the modulation scheme (typically differential BPSK, QPSK, or QAM). The required spectrum is then converted back to its time domain signal using an Inverse Fourier Transform. In most applications, an Inverse Fast Fourier Transform (IFFT) is used. The IFFT performs the transformation very efficiently, and provides a simple way of ensuring the carrier signals produced are orthogonal. The Fast Fourier Transform (FFT) transforms a cyclic time domain signal into its equivalent frequency spectrum. This is done by finding the equivalent waveform, generated by a sum of orthogonal sinusoidal components.

The amplitude and phase of the sinusoidal components represent the frequency spectrum of the time domain signal. The IFFT performs the reverse process, transforming a spectrum (amplitude and phase of each component) into a time domain signal. An IFFT converts a number of complex data points, of length, which is a power of 2, into the time domain signal of the same number of points. Each data point in frequency spectrum used for an FFT or IFFT is called a bin. The orthogonal carriers required for the OFDM signal can be easily generated by setting the amplitude and phase of each bin, then performing the IFFT. Since each bin of an IFFT corresponds to the amplitude and phase of a set of orthogonal sinusoids, the reverse process guarantees that the carriers generated are orthogonal.

III. SPACE-TIME BLOCK CODING

Multiple-input multiple-output (MIMO) system is known to exploit the antenna diversity to develop the performances of wireless communication systems using multiple antenna elements at the transmitter and receiver ends. The main objective of MIMO technology is to improve bit error rate (BER) or the data rate of the
communication by applying signal processing techniques at each side of the system. The capacity increases linearly with the number of antennas while using MIMO however it gradually saturates. MIMO can obtain both multiplexing gain and diversity gain and can help significantly increase the system capacity. The earliest studies considering MIMO channels were carried out. MIMO can be divided into two main classes, spatial multiplexing (SM) and STC.

In a wireless communication system the mobile transceiver has a limited power and also the device is so small in size that placing multiple antennas on it would lead to correlation at the antennas due to small separation between them. To avoid this, the better thing to do is to use multiple transmit antennas on the base station and the mobile will have only one. This scenario is known as Multiple Input Single Output (MISO) transmit-diversity. A system with two transmit and one receive antenna is a special case and is known as Alamouti STBC. The Alamouti scheme is well known since it provides full transmit diversity. For coherent detection it is assumed that perfect channel state information is available at the receiver. However, when there is high mobility and the channel conditions are fluctuating rapidly it may be difficult to obtain perfect or close to perfect estimates for the channel. To alleviate this problem another space-time block coding techniques known as DSTBC has been proposed. In this technique, two serial transmitted symbols are encoded into phase differences and the receiver recovers the transmitted information by comparing the phase of the current symbol with the previously received symbol.

A. Transmit Diversity

Transmit diversity (TD) is an important technique to achieve high data rate communications in wireless fading environments and has become widely applied only in the early 2000s. Transmit diversity techniques can be categorized into open loop and close loop techniques. For open-loop systems the most popular transmit-diversity scheme (depicted in Figure 3) is the (2x1) Alamouti scheme where channel state information and the code used is known to the receiver.

B. Alamouti Code

Alamouti system is one of the first space times coding schemes developed for the MIMO systems which take advantage out of the added diversity of the space direction. Therefore we do not need extra bandwidth or much time. We can use this diversity to get a better bit error rate. At the transmitter side, a block of two symbols is taken from the source data and sent to the modulator. Afterwards, the Alamouti space-time encoder takes the two modulated symbols, in this case x1 and x2 and creates an encoding matrix x where the symbol x1 and x2 are planned to be transmitted over two transmit antennas in two consecutive transmit time slots. The Alamouti encoding matrix is as follows:

\[X = \begin{bmatrix} x_1 & x_2 \\ -x_2^* & x_1^* \end{bmatrix} \]

(1)

A block diagram of the Alamouti ST encoder is shown in Fig.4.

Fig.4. Alamouti Space-Time Encoder.

The Alamouti STBC scheme which has 2 transmit and Nr receive antennas can deliver a diversity order of 2 Nr. Also, since for space time codes the rate is defined as R=k/p (where k is the number of modulated symbols the encoder takes as input and p is the number of transmit antennas) for the Alamouti STBC the rate equals 1.

1. Alamouti STBC Decoding with One Receive Antenna

A block diagram of Alamouti STBC decoder is illustrated in Fig. 5. At the receiver antenna, the signals r1 and r2 received over two consecutive symbol periods can be written as follows:

\[r_1 = r(t) = h_1 x_1 + h_2 x_2 + n_2 \]

\[r_2 = r(t + T) = -h_1 x_1^* + h_2 x_2^* + n_2 \]

(2)

In order to estimate the transmitted symbols (two in this case) the decoder needs to obtain the channel state information (in this work we assume we have perfect CSI) and also use a signal combiner as could be seen from Fig 5. The channel estimates together with the outputs from the combiner are then passed on to the Maximum Likelihood decoder (ML) to obtain the estimates of the transmitted symbols. Considering that all the constellation points are equiprobable, the decoder will choose among all pairs of signals (x1, x2) one that would minimize the distance metric shown below.
By substituting (2) into (3), the maximum likelihood decoding can be written as

\[
\arg \min_{(\hat{x}_1, \hat{x}_2) \in C} \left(|h_1|^2 + |h_2|^2 - 1 \right) |\hat{x}_1|^2 + d^2(\hat{x}_1, \hat{x}_2) + \sum_{(\hat{y}_1, \hat{y}_2) \in C} d^2(\hat{y}_1, \hat{y}_2)
\]

Where, C is all probable modulated symbol pairs \((x_1, x_2)\). \(x_1\) and \(x_2\) are formed by combining the received signals \(r_1\) and \(r_2\) with channel state information known at the receiver. The combined signals are given by:

\[
\hat{x}_1 = h_1^1 r_1 + h_2^2 r_2^2
\]

\[
\hat{x}_2 = h_2^1 r_1 + h_1^2 r_2^2
\]

Substituting \(r_1\) and \(r_2\) from (2), into (5), the combined signals can be written as,

\[
\hat{x}_1 = (|h_1|^2 + |h_2|^2) x_1 + h_1^* n_1 + h_2^* n_2^2
\]

\[
\hat{x}_2 = (|h_1|^2 + |h_2|^2) x_2 + h_2^* n_2 + h_1^* n_2^2
\]

Where, \(h_1\) and \(h_2\) are a channel realization, the combined signals \(x_i\), \(i = 1, 2\), depends only on \(i = 1, 2\). It is possible to split the maximum likelihood decoding rule into two independent decoding rules for \(x_1\) and \(x_2\) as shown below:

\[
\hat{x}_1 = \arg \min_{\hat{x}_1 \in S} \left(|h_1|^2 + |h_2|^2 - 1 \right) |\hat{x}_1|^2 + d^2(\hat{x}_1, \hat{x}_2)
\]

\[
\hat{x}_2 = \arg \min_{\hat{x}_2 \in S} \left(|h_1|^2 + |h_2|^2 - 1 \right) |\hat{x}_2|^2 + d^2(\hat{x}_2, \hat{x}_1)
\]

Since for M-PSK modulated symbols \(|h_1| + |h_2| - 1\), \(i = 1, 2\) is constant for all signal points equation (7) can further be simplified as:

\[
\hat{x}_1 = \arg \min_{\hat{x}_1 \in S} d^2(\hat{x}_1, \hat{x}_1)
\]

\[
\hat{x}_2 = \arg \min_{\hat{x}_2 \in S} d^2(\hat{x}_2, \hat{x}_2)
\]

A. Simple and Robust Synchronization

Synchronization includes symbol timing, sample clock, and carrier frequency synchronization. The proposed synchronizer concentrates on the symbol boundary detection and the carrier frequency recovery loop as presented in the following sections.

1) Symbol Boundary Detection: An ISI free region of symbol timing detection is determined by the difference in length between the CP and the channel impulse response. Since the proposed system has two transmit antennas, the signals transmitted from different antennas may arrive at the receiver with different delays due to multipath effect. Therefore, the decided boundary must locate in the common ISI free region to prevent the respective ISI effects from other symbols. IEEE 802.16e standard provides three types of preamble subcarrier sets which can be expressed as [2].

\[
PreambleCarrierSet_s = s + 3 \cdot k
\]

Where \(s = 0, 1, 2\) is the subcarrier set index, and denotes a running subcarrier index. These subcarriers are modulated by BPSK with a specific pseudo-noise (PN) code. Because the FFT size is not a multiple of 3, the time-domain preamble symbol is not exactly periodic. Using delay correlation method is difficult to precisely detect symbol boundary. Since the preamble symbol is a known sequence after system acquisition, a match filter corresponding to the time-domain preamble sequence transmitted from the antenna can be applied to match the received sample sequence and obtain the symbol boundary. The match filter complexity depends on the matching length, so a suitable length must take both performance and complexity into consideration. The symbol boundary can be found as

\[
s^{(i)} = \max_n \left(\sum_{m=0}^{L-1} r[n + m] \cdot \left(p^{(i)}[m]\right)^* \right)
\]

Where \(m\) and \(n\) denote the sample indices. When the index corresponds to the peak of the matching results, the value of will be found. According to the values of 1 and 2, the final symbol boundary is decided to be located in the common ISI free region. However, the mismatch of oscillator frequency in a receiver and a transmitter causes frequency offset effects in the received signals and destroys the characteristic of the matching results. In order to overcome this problem, we propose a modified match filter. The filter coefficient sequence which is the known preamble sequence is compensated with the possible values of ICFO. An output peak will appear in matching with the preamble sequence compensated with the corresponding ICFO. Hence, this match filter has an additional advantage that the coarse ICFO can be detected simultaneously. The proposed design is defined to support the frequency offset to ±14 ppm variation. The maximum CFO is equivalent to 35 kHz in the 2.5 GHz carrier frequency. Therefore, there are seven possible ICFO values ranging to.
B. Carry Frequency Recovery

After symbol boundary has been successfully obtained, the CP position is known. The CP repeating characteristic can be used to estimate FCFO by correlating the CP with the corresponding received sample sequence. However, when the CFO value is in the middle of two integer values, the accuracy of ICFO detection by using the match filter method is substantially decreased. Because the ICFO effects caused by these two integer values are almost the same, there are two undistinguishable peaks in the matching results. The undistinguishable peaks caused by noise and another antenna interference may easily result in wrong ICFO detection. Therefore, a ping-pong algorithm is proposed to improve the performance of ICFO detection. The ping-pong algorithm partitions each CFO region into the strong region and the weak region depending on the distance to each integer value, as shown in Fig. 3. The accurately estimated FCFO value can be used to correct the ICFO detection. When the estimated FCFO value locates in the strong region; the matching results have strong reliability to determine ICFO by detecting the peak value. When the estimated FCFO value locates in the weak region, there are two possible peaks in the matching results.

Thus, the ICFO value will be adjusted by the information of the FCFO value and these two peaks. For example, there are two peaks appearing in the ICFO values of 0 and 1, and the FCFO value is correctly estimated to be 0.4 located in the weak region. If the ICFO value is detected to be 1 directly depending on the output peak, the estimated CFO is 1.4 this result is unreasonable because another peak is 0 but not 2. By using this ping-pong algorithm, the ICFO value will be correctly adjusted to be 0. The error probability of ICFO detection is simulated at the vehicle speed of 60 km/hr with of 16 dB, where is a ratio of the received bit energy to the noise power spectral density. The error probability using the direct detection method rapidly increases to about 0.5 when FCFO approaches 0.5 (the weak region), whereas it is normally about. However, the proposed ping-pong scheme is effective to maintain ICFO error probability at about in the weak region.

C. Accurate Two-Stage Channel Estimation

Two major categories of pilot-aided channel estimation methods are interpolation-based channel estimation methods and DFT-based channel estimation methods. Interpolation-based method estimates channel frequency response (CFR) by interpolating the received pilot subcarriers. This method is not suitable for outdoor fast fading channels. This is because the channel coherent bandwidth becomes small, and using the interpolation-based method with limited pilot information becomes more difficult to recover channel variations. DFT-based method focuses on transform domain to characterize time-domain channel impulse response (CIR) and effectively improves the performance by suppressing time-domain noise. Many DFT-based methods derived from maximum likelihood (ML) scheme have been studied for OFDM systems with preambles. In order to further improve the estimation performance, the DF DFT-based channel estimation method is employed by using decided data subcarriers as pilot subcarriers to track channel variations for saving transmission bandwidth and providing sufficient tracking information.

Fig.6. Proposed Two stage channel Estimator.

A two-stage channel estimation method is used to realize a successful STBC-OFDM system in outdoor mobile channels. The multipath fading channel is characterized by CIR consisting of a few significant paths. The delays of these paths usually vary slowly in time, but the path gains may vary relatively fast. Therefore, in the initialization stage, the significant paths are identified during the preamble symbol time. In the tracking stage, the path gain variations in the identified path positions will be tracked in the following data symbol transmission. Fig.4 shows the architecture of the two-stage channel estimator.

1. Initialization Stage

The operation blocks in this stage are a preamble match, an IFFT, a straight multipath interference canceller (SMPIC)-based de-correlate, and an FFT. The preamble match correlates the received signal with the frequency domain preamble symbol to get the preliminary CFRs of different antenna pairs. Then, the CIR can be obtained the proposed match filter applied with the ICFO-compensated coefficients can reduce the CFO effect and provide the precise symbol boundary detection, and the ICFO value can be detected simultaneously.

- The proposed ping-pong algorithm using the estimated FCFO value can refine the ICFO value and improve the accuracy.
- The proposed two-stage channel estimation can highly improve the performance in outdoor mobile channels as compared with the interpolation-based methods that are frequently adopted in the baseband implementation.

International Journal of Advanced Technology and Innovative Research
Volume. 06, Issue No.12, December-2014, Pages: 1519-1527
proposed SMPIC-based de-correlate uses a straightforward method to identify significant paths and cancel the multipath interference, which can highly reduce the implementation cost. In the tracking stage, the matrix inverse computation is efficiently avoided by employing the strongly diagonal property, which can highly save the computation complexity.

IV. ARCHITECTURE AND CIRCUIT DESIGN

The decision of signal word lengths affects the system performance and hardware complexity. The output SNR at the STBC decoder is used as a performance criterion to determine the appropriate word lengths of each building block.

A. Synchronizer

In the match filter, each tap performs complex multiplication of the coefficient and the received sample. If the coefficients are quantized into, the tap operation can be simplified to add or subtract the received sample. It avoids the multiplier usage and reduces the register requirement. However, the sign calculation is necessary due to subtraction, and more hardware effort is required for sign extension. Therefore, if the signed calculation is avoided, the hardware and power will be further saved. In the proposed method, both the real and imaginary parts of the received sample are quantized into. The quantization loss is less than 0.8 dB in SNR, and it can be compensated by increasing the matching length, which costs only a little hardware overhead. When the total numbers of 0’s and 1’s stored in tap registers, denoted as hand, are known, the number of -1 can also be obtained at the same time. Therefore, the matching result can be calculated as

\[\text{Matching Result} = N_1 - (L - N_0 - N_1) = 2N_1 - L + N_0 \quad (11) \]

According to the simulation results at the vehicle speed of 120 km/hr, the matching length of 300 is chosen in this case so that the symbol miss error probability approaches the lowest boundary. A monitor circuit is used to count after each data updating. The tap results are generated by the logical circuits and are accumulated to obtain by a carry save adder (CSA) tree. A logical circuit can be simplified to use only NAND gate and NOR gates. In the proposed symbol boundary detection, the coefficient sequence is pre-shifted with the possible values of ICFO, so the ICFO can be detected simultaneously. The coefficient sequence is stored in ROM. In order to accumulate the matching results twice for ICFO detection, an additional circuit is necessary to store the previous matching results as shown in Fig. 6. If the control signal is positive, the registers will respectively store the current matching results of the possible ICFO values. On the contrary, if a control signal is negative, the chain of the registers works as the shift-registers for accumulating the matching results. Finally, the accumulated results are passed to the comparator to select the two ICFO values that have maximum peaks in the accumulated results.

V. SIMULATION RESULTS

A. Matlab outputs

The below graph (fig 9) is the matlab implemented result for the ofdm architecture by increasing the fading noise between the transmitter and receiver. The graphs determines the linear decrease in the error rate by increasing signal to noise ratio.

No of transmitter: 2
No of receiver: 1

Fig. 9. Bit error rate for the signal to noise ratio.
Downlink Baseband Receiver for Mobile WMAN That is Applied in the STBC-OFDM System by using Ping-Pong Algorithm

The above simulation shows (fig 12) the input of the transmitter and the output of the stbc OFDM transmitter the number of transmit antennas are two.

Fig.10. Bit error rate with respect to the mobility of wlan.

The above graphs from 10 to 11 plotted by the matlab determines the speed of the lan in motion .even though the speed increases upto certain rage BER stays in the constant by our proposed method. Bit error rate for the proposed method when compared with different transmit anntenas for channel estimation.

Fig.11. Bit error rate with respect to noise ratio for different antenna number.

B. Xilinx outputs

Fig.12. Top module simulation of transmitter.

The above simulation is to find the conjugate of the input and encoded using almouti scheme almouti scheme is discussed in the chapter 3 .the format of the input is paved in the 2 transmit antenna (fig 13).

Fig.13. Simulation of stbc encoder.

Fig.14. Simulation of ifft module.

To make the serial data parallel ifft is implemented each for each transmitter (fig 14).

Fig.15. Simulation of receiver module.

International Journal of Advanced Technology and Innovative Research
Volume. 06, IssueNo.12, December-2014, Pages: 1519-1527
VI. CONCLUSION

In this paper, we propose a downlink baseband receiver for mobile WMAN that is applied in the STBC-OFDM system with two transmit antennas and one receive antenna. A simple symbol boundary detector, a carrier frequency recovery loop modified by the ping-pong algorithm, and an accurate two-stage channel estimator are effectively implemented. Although the two-stage channel estimator requires higher hardware cost as compared with the interpolation-based channel estimators, it has significant performance improvement for successfully realizing the STBC-OFDM system in outdoor mobile environments. From the simulation results, we have shown that the proposed receiver improves about 8.5 dB of the normalized MSE for 16QAM modulation as compared with that adopting the 2-D interpolation methods in multipath fading channels. Moreover, under the vehicle speed of 120 km/hr, the convolutional coded BER for 16QAM modulation can achieve less than 10^{-6} with coded rate of 1/2. The proposed receiver designed in 90-nm CMOS technology can support up to 27.32 Mbps (un-coded) downlink throughput under 10 MHz channel bandwidth. This design has a core area of 2.4×12.41 mm and dissipates 68.48 mW at 78.4 MHz operating frequency. With verifications through all of the simulations and design results, the proposed baseband receiver can provide a solid foundation for WMAN in fixed and mobile wireless communication.

VII. REFERENCES

Author’s Profile:
S.Ashok Kumar, pursuing M. Tech (VLSI & EMBEDDED SYSTEM DESIGN) Gates Institute Of Technology gooty Anantapur Andhra Pradesh and received his B.TECH degree in ece from Gates Institute Of Technology gooty Anantapur Andhra Pradesh his Area Of Interest: Embedded Systems Design Fields, VLSI DESIGN, Wireless communications.
Email id: ashok.kumar9292@gmail.com.

Mrs. K. Maheswari, M.Tech(CNE) Working As A Associate professor in department Of ECE, Gates Institute Of Technology GOOTY, ANANTAPUR ANDHRA PRADESH Area Of Interest: Mobile Communication, wireless communication, Cryptography.
Email: kmaheswari2009@gmail.com.